GD 44

Tableau des charges statiques

Distance entre appuis	Charge uniformément répartie		Charge ponctuelle centrée		Charge ponctuelle par tiers		Charge ponctuelle par quarts		Charge ponctuelle par cinquièmes	
m	kg/m	mm	kg	mm	kg (2x)	mm	kg (3x)	mm	kg (4x)	mm
1	4351,9	0,1	4351,9	0,2	2175,9	0,2	1450,6	0,2	1088,0	0,2
2	2171,4	1,2	3474*	1,5	2019*	1,5	1447,6	1,5	1085,7	1,4
3	1444,5	3,9	2816*	4,1	1733*	4,3	1300*	4,5	1040*	4,6
4	1081,1	9,3	2328*	8,0	1505*	8,8	1152*	9,4	949*	9,9
5	789,2	16,7	1973,0	13,4	1317*	15,2	986,5	15,8	822,1	16,8
6	545,3	24,0	1635,8	19,3	1165*	23,3	817,9	22,8	681,6	24,2
7	398,2	32,7	1393,6	26,3	1035*	33,1	696,8	31,1	580,7	32,9
8	302,7	42,7	1210,8	34,4	908,1	43,6	605,4	40,6	504,5	43,0
9	237,2	54,1	1067,6	43,7	800,7	55,3	533,8	51,5	444,8	54,5
10	190,4	66,9	952,1	54,2	714,1	68,3	476,1	63,7	396,7	67,4
11	155,8	81,0	856,8	65,8	642,6	82,7	428,4	77,2	357,0	81,6
12	129,4	96,5	776,6	78,6	582,4	98,5	388,3	92,0	323,6	97,2
13	108,9	113,4	708,0	92,6	531,0	115,7	354,0	108,2	295,0	114,2
14	92,7	131,7	648,6	108,0	486,5	134,3	324,3	125,7	270,3	132,6
15	79,5	151,4	596,5	124,5	447,4	154,4	298,3	144,7	248,5	152,5
16	68,8	172,5	550,3	142,5	412,8	175,9	275,2	165,0	229,3	173,7
17	59,9	195,1	509,1	161,7	381,8	198,8	254,5	186,7	212,1	196,4
18	52,4	219,1	471,9	182,4	353,9	223,2	235,9	209,9	196,6	220,6
19	46,1	244,6	438,1	204,5	328,6	249,0	219,0	234,5	182,5	246,2
20	40,7	271,5	407,2	228,1	305,4	276,3	203,6	260,6	169,7	273,2
21	36,1	300,0	378,9	253,2	284,2	305,1	189,4	288,3	157,9	301,8
22	32,1	329,9	352,7	279,8	264,5	335,5	176,4	317,4	147,0	331,9
23	28,6	361,4	328,4	308,1	246,3	367,3	164,2	348,1	136,8	363,5
24	25,5	394,4	305,7	338,1	229,3	400,7	152,9	380,3	127,4	396,7

^{*} limitée par l'interaction causée par le décalage / le décalage au niveau du système d'assemblage est déterminant. Il faut comprendre les charges uniformes élevées d'une manière idéalisée. La charge doit être appliquée dans le nœud.